62 research outputs found

    The Timing Counter of the MEG experiment: calibration and performance

    Full text link
    The MEG detector is designed to test Lepton Flavor Violation in the μ+e+γ\mu^+\rightarrow e^+\gamma decay down to a Branching Ratio of a few 101310^{-13}. The decay topology consists in the coincident emission of a monochromatic photon in direction opposite to a monochromatic positron. A precise measurement of the relative time te+γt_{e^+\gamma} is crucial to suppress the background. The Timing Counter (TC) is designed to precisely measure the time of arrival of the e+e^+ and to provide information to the trigger system. It consists of two sectors up and down stream the decay target, each consisting of two layers. The outer one made of scintillating bars and the inner one of scintillating fibers. Their design criteria and performances are described.Comment: Presented at the 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10) 7 - 10 June 2010, Siena. Accepted by Nuclear Physics B (Proceedings Supplements) (2011)tal

    Single-hit resolution measurement with MEG II drift chamber prototypes

    Get PDF
    Drift chambers operated with helium-based gas mixtures represent a common solution for tracking charged particles keeping the material budget in the sensitive volume to a minimum. The drawback of this solution is the worsening of the spatial resolution due to primary ionisation fluctuations, which is a limiting factor for high granularity drift chambers like the MEG II tracker. We report on the measurements performed on three different prototypes of the MEG II drift chamber aimed at determining the achievable single-hit resolution. The prototypes were operated with helium/isobutane gas mixtures and exposed to cosmic rays, electron beams and radioactive sources. Direct measurements of the single hit resolution performed with an external tracker returned a value of 110 μ\mum, consistent with the values obtained with indirect measurements performed with the other prototypes.Comment: 18 pages, 18 figure

    Development and commissioning of the Timing Counter for the MEG Experiment

    Full text link
    The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the e+e^+ in searching for the decay μ+e+γ\mu^+ \rightarrow e^+\gamma. It is part of a magnetic spectrometer with the μ+\mu^+ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. The design criteria, the obtained performances and the commissioning of the detector are presented herein.Comment: 10 pages, 20 figures. Presented at the IEEE Nuclear Science Symposium 2010, Knoxville, TN, USA. Accepted by IEEE Transaction on Nuclear Scienc

    The MEG detector for μ+e+γ{\mu}+\to e+{\gamma} decay search

    Get PDF
    The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\ by using one of the most intense continuous μ+\mu^+ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.Comment: 59 pages, 90 figure

    New constraint on the existence of the mu+-> e+ gamma decay

    Get PDF
    The analysis of a combined data set, totaling 3.6 \times 10^14 stopped muons on target, in the search for the lepton flavour violating decay mu^+ -> e^+ gamma is presented. The data collected by the MEG experiment at the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new upper limit on the branching ratio of this decay of 5.7 \times 10^-13 (90% confidence level). This represents a four times more stringent limit than the previous world best limit set by MEG.Comment: 5 pages, 3 figures, a version accepted in Phys. Rev. Let

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page

    Measurement of the radiative decay of polarized muons in the MEG experiment

    Get PDF
    We studied the radiative muon decay μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B(μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ+e+γ\mu^+ \to e^+\gamma process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which was recently calculated. Published versio

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201

    Limits on scalar leptoquark interactions and consequences for GUTs

    Get PDF
    A colored weak singlet scalar state with hypercharge 4/3 is one of the possible candidates for the explanation of the unexpectedly large forward-backward asymmetry in t tbar production as measured by the CDF and D0 experiments. We investigate the role of this state in a plethora of flavor changing neutral current processes and precision observables of down-quarks and charged leptons. Our analysis includes tree- and loop-level mediated observables in the K and B systems, the charged lepton sector, as well as the Z to b bbar decay width. We perform a global fit of the relevant scalar couplings. This approach can explain the (g-2)_mu anomaly while tensions among the CP violating observables in the quark sector, most notably the nonstandard CP phase (and width difference) in the Bs system cannot be fully relaxed. The results are interpreted in a class of grand unified models which allow for a light colored scalar with a mass below 1TeV. We find that the renormalizable SU(5) scenario is not compatible with our global fit, while in the SO(10) case the viability requires the presence of both the 126- and 120-dimensional representations.Comment: 26 pages, 7 figures; version as publishe

    The MEG detector for μ+→e+γ decay search

    Get PDF
    The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay mu(+) -> e(+)gamma by using one of the most intense continuous mu(+) beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus
    corecore